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ON THE EVALUATION OF OPTIMAL AND NON-OPTIMAL CONTROL STRATEGIES’ 

by 
** E. Polak ._ 

INTRODUC TlON 

Since the conversion of a system from non-optimal or quasi-optimal opera- 

tion is usually quite costly, it would be very desirable to be able to predict the 

maximum probable improvement in the performance of the system, resulting from 

such a conversion. This, of courses r e q d r e s  that the characteristics of the 

system and the conditions under which it operates be entirely understood. However, 

it is also necessary to have some definite measarke of performance, one may be 

called a figure of merit, which can be used for comparing the performance of 

different systems. Such a figure of merit must be a number which expresses 

‘some very significant aspect of the performance of the system in terms of the 

cost function to be used for optimization. 
6 
Thus, for example, in the case of 

. the midcourse guidance of a moonshot, a minimum fuel system may be proposed, 

and, a s  a figure of merit  one may choose the average estimated fuel consumption 

for a trajectory or  the maximum estimated fuel consumption for a trajectory. 

It is clear from this example that more than one figure of merit  may be associ- 

- 

ated with an optimization cost function and that all of them may be important. 

Thus, in a complex system, different parts of which may have different cost 

functions associated with them, the variou; figures of merit  obtained can be 

combined with figures expressing costs reliability, etc., to form either a com- 
$ 

‘pound and more realistic performance index, or to form a vector cost function (1) . 

* 
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If the system is a regulator, the most likely significant aspects of per- 

. formance in terms of the optimal control cost function a r e  average estimated 

cost and maximum cost for a single process within a specified class. These 

will be defined more explicity further on and methods for their computation, 

based OB the properties of optimal controlsI will  be suggested. 
4 

4 .- '. .  

- DESCRIPTION OF A TYPICAL REGULATOR SYSTEM 

Gonsider a system with a codiguration a s  shown in fig. 1. and which is 

de scribed by the differential equation: 

where x = col(x 

is the feedback computer output and - f is a continuous and differentiable function 

. . s x  ) is the state vector of the system, - u(t) = col(ul, . . . ,u,) - IS.* n 

in all its variables. 

which is closed and bounded. 

The vector u(t) is constrained to lie within some set f i  - 
The system (1) ma? be sampled-data, in which 

case u(t) is  subject to a PAM or PWM modulation law"), and the state is - 
observed a t  sampling instants only. The desired terminal state for the regu- 

lator will  be denoted by x and the cost of taking the system from an  initial 

state x to x will  be denoted by c(zo). 

integral evaluated along the trajectory in question and has the form 

-d 

The cost is usually defined by an 
-0 a 

0 where T is the time it tzkes to transfer x0 to x 

is continuous in all  its variables. 

and f the cost function, -d 

Further, it is asseamed that for eachmode of operation there exists 

a closed bounded set 3 in the state spacep which contains all  the possible 

initial states. Let us also assume that the probability p(x)dV - of an initial 
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state x lying in 

usually caused 

- the element of volume dV of x is known. Initial states a re  

by disturbances and these may be studied in an  existing system. 

If the disturbances produce initial states &dependently of the control strategy 

used (as in magnetic memories where the address is the disturbance), then a 

single determination of the probability density fdc t ion  will suffice for all con- 

trol  laws under consideration. 

tion, using available data about the disturbances, in order to determine the 

initial states probability distribution a s  well a s  the set 1 on which it is defined. 

Otherwise, one may have to resort  to simula- 

For a system described a s  above, o ie  may define two figures of merit: 

which represents the average estimated cost of the process, and 

(4) 

which represents the maximum possible cost for a single transition inside the 

given set x and is in fact the maximum estimated cost for a single transition. 

METHODS FOR EVALUATING m, - 
There a r e  obviously many ways in which a computation of m can be 1 

carried out, however, only one which is very simple will be indicated here. 

First, it is necessary to construct an  ordering for any finite number 

of vectors in the set x . Let Q , m=l, 2, . . . 2n be the open quadrant defined by 

b., X i >  0, m=1,2 ,... 
m 

= e: x = E  Ai(-1) 
n 4y 

-1 - -  
i= 1 *m 

where b. = col( 0, 0, . . , 0 , l  , 0, . . , 0) is a uni't vector whose ith component i s  one 

and the rest are zero and the 4 
-1 m 

are  determined from the equation 
1 
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Consider now any finite set of vectors 

Let us agree to the convention: 

(a)  i f  

(b) i f  X I  and x" are both in fc nQ 

x* n Q. and X,"E: f n Q j ,  and i < j, then X I >  XI '  
1 - -  - 

and i f  m - - 

(ii) xti = x" for i=l, 2,. . k, k 4  n and i 

I then x1 >x". - -  
By means of such an ordering, the vectors (2,0,0, l ) ,  (2,0,1,0),  (1,3,1,2)and 

(1,2,3,4) would be arranged into a table in ascending order a s  shown below: 

( 1 ~ 2 s  394) 

(183,192) 

(2,0, 0 ,  1) 

(29 0,1,0) 

Now construct the smallest cube containing and, dividing each co- 

ordinate into 2k equal parts, divide this cibe into (2k)" cubic elements & V  

with centres x.. For  all those centres xi whose probability of being in A Vi 

is not zero, construct a table as shown below, using the ordering convention (7). 

i 

1 

Table No. 1 

-1 

I 
in Table No. 1, p(x.) A Vi denotes the proLbility of x. being in 4 Vi. 

-1 

'Case 1 

If the control strategy is given in explicit form which is usually the case 

in non-optimal control, then one can evaluate the'costs c(x.) for the centres of 

the AV. by direct integration and store them in a third column added to Table 

No. 1 to form Table No. 2. 

-1 

1 
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Table No. 2 

Summing over Table No. 2, one may now obtain a first approximation for m,:  

In order to test the goodness of such an approximation, one may refine the 

partition of the cube and repeat the above operations. If the change in the 

approximate value of m ,  is sufficiently small, say 5 percent, one may stop, 

otherwise one may have to continue refining the partitioning of the cube. 

& 

* C a s e  2 

If the control law is not given in an explicit-form, which is frequenctly 

the case in optimal control, but is given a s  an  iterative algorithm, or a s  an 

algorithm involving the storage of switching surfaces, then it may be more 

convenient to take advantage of the known structural properties of optimal 

controls. Thus, i f  one can represent each optimal control a s  a point in a 

parameter space, one can find the corresponding'initial state by solving the 

plant differential equation backwards in time starting from the point x 

an example consider the minimum time second order regulator 

As a* 

- x = -- A x t du(t), lu l l1  ( 9 )  

where A is a 2 x 2 constant matrix with r i a l  eigenvalues and d is a constant 

vector. The optimal controls for this system have the form shown in fig. 2 

- - 

from which it is clear that the two parameters tl and t 

control up to its polarity. 

maps into two points. 

describe an optimal 2 
Thus, each point (tl, t2) of the parameter plane 
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'Jo 

Now, devise a suitable grid in the pirameter space, such a s  shown in 

fig. 3 for the second order minimum time regulator, and map the grid points 

into the state space, thus obtaining points x' with known costs c(x'.). 

still using the ordering (7), construct Table No. 3 by entering the x i  and 
- 1  

c(xt.) into Table No. 1. 

Now, - i  - 1  

- 1  

Table No. 3 

In Table No. 3, most rows will have entries only either in the first and 

second column or in the first and third column. Let x, .) j=1 ,2 , .  . . , ki, be 

the cube centres lying in Table No. 3 between the, point - xli and - x'  itl, then 

a first approximation to the figure of merit  m wil l  be given by expressioh 

-1J 

1 1  

ml = 1 i CC"'i) (T P(_xij) A V J  (9) 

More accurate approximations can then be obtained by refining the grid in 

the parameter space and further partitioning of the elementary cubes &Vi. 

METHODS FOR EVALUATING m 2  

It i s  reasonably clear that the tables prepared for evaluating m can 1 
be scanned to find an approximate value fo i  m 

however, that the cost fimction c(x) - may be discontinuous, as in the case ic 

- I t  should be observed, 2' 
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minimal time control of PAM and PWM regulator systems, and in such a 

case one would have to allow a margin in the positive direction on the value 

of m , of magnitude equal to the size of the largest jump in the value of 

c(x) over x.  
this is exactly one unit. 

2 

For  the mentioned PAM and PWM minimum time systems - 

* 4 CONCLUSION 

It might be interesting to point out that parametrization of the optimal 

control space is possible in a number of &portant cases such a s  minimal 

time and minimal fuel control of continuous and discrete regulator systems 

when the plants a r e  linear or when they can be shown to be optimal strategy 

equivalent to certain linear plants (2) . 
In conclusion, the author would like to remark that there was no 

intention to minimize the difficulties involved in properly identifying the 

plant and the nature of the disturbances. 

on a case by case basis. 

However, these must be treated 

dY&G&& 
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FIG.  1. REGULATOR CONFIGURATION 

FIG.  2. O P T I M A L  CONTROLS F O R  SECOND ORDER REGULATOR 
WITH REAL EIGENVALUES. 
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FIG.  3. PARAMETRIZATION O F  CONTROL S P A C E  F O R  SECOND 
ORDER REGULATOR WITH REAL EIGENVALUES. 


